Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1473-1483, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38205949

RESUMO

Though toxins produced during harmful blooms of cyanobacteria present diverse risks to public health and the environment, surface water quality surveillance of cyanobacterial toxins is inconsistent, spatiotemporally limited, and routinely relies on ELISA kits to estimate total microcystins (MCs) in surface waters. Here, we employed liquid chromatography tandem mass spectrometry to examine common cyanotoxins, including five microcystins, three anatoxins, nodularin, cylindrospermopsin, and saxitoxin in 20 subtropical reservoirs spatially distributed across a pronounced annual rainfall gradient. Probabilistic environmental hazard analyses identified whether water quality values for cyanotoxins were exceeded and if these exceedances varied spatiotemporally. MC-LR was the most common congener detected, but it was not consistently observed with other toxins, including MC-YR, which was detected at the highest concentrations during spring with many observations above the California human recreation guideline (800 ng/L). Cylindrospermopsin was also quantitated in 40% of eutrophic reservoirs; these detections did not exceed a US Environmental Protection Agency swimming/advisory level (15,000 ng/L). Our observations have implications for routine water quality monitoring practices, which traditionally use ELISA kits to estimate MC levels and often limit collection of surface samples during summer months near reservoir impoundments, and further indicate that spatiotemporal surveillance efforts are necessary to understand cyanotoxins risks when harmful cyanobacteria blooms occur throughout the year.


Assuntos
Toxinas Bacterianas , Cianobactérias , Humanos , Microcistinas/análise , Qualidade da Água , Toxinas Marinhas , Toxinas Bacterianas/análise , Água Doce/análise , Água Doce/química , Água Doce/microbiologia , Toxinas de Cianobactérias , Cianobactérias/química , Monitoramento Ambiental/métodos
2.
Harmful Algae ; 130: 102542, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061823

RESUMO

Cyanobacterial blooms and the toxins they produce pose a growing threat worldwide. Mitigation of such events has primarily focused on phosphorus management and has largely neglected the role of nitrogen. Previous bloom research and proposed management strategies have primarily focused on temperate, dimictic lakes, and less on warm-monomictic systems like those at subtropical latitudes. The in-lake conditions, concentration of total microcystins, and microbial functioning of twenty warm-monomictic lakes in the southcentral United States were explored in the spring and summer of 2021. Our data revealed widespread microcystins in lakes across this region, some of which exceeded regulatory limits. Microcystins were higher in the spring compared to the summer, indicating that warm-monomictic lakes, even across a large range of precipitation, do not follow the trends of temperate dimictic lakes. Microcystins were found in surface waters and bottom waters well below the photic zone, reflecting the persistence of these toxins in the environment. Principal components analyses showed a strong association between microcystins, nitrate + nitrite, and Planktothrix relative abundance and transcriptional activity. Many systems exhibited stronger denitrification in the spring, perhaps contributing to the decreased toxin concentrations in the summer. Counter to most sampled lakes, one lake with the highest concentration of total microcystins indicated nitrogen cycle disruption, including inhibited denitrification. These findings are relevant to mitigating cyanobacterial blooms and toxin production in warm-monomictic systems, and suggests a need to consider nitrogen, and not solely phosphorus, in nutrient management discussions.


Assuntos
Cianobactérias , Microcistinas , Estados Unidos , Microcistinas/análise , Lagos/microbiologia , Nitratos/análise , Nitritos/análise , Ciclo do Nitrogênio , Nitrogênio/análise , Fósforo/análise
3.
Environ Toxicol Chem ; 42(6): 1190-1198, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132581

RESUMO

Although freshwater mussels are imperiled and identified as key conservation priorities, limited bioaccumulation information is available on these organisms for contaminants of emerging concern. In the present study we investigated the bioaccumulation of per- and polyfluoroalkyl substances (PFAS) in the model freshwater pond mussel Sagittunio subrostratus because mussels provide important ecosystem services and are important components of aquatic systems where PFAS occur. In the present study we selected four representative perfluorinated carboxylic acids and sulfonic acids, then determined the bioaccumulation kinetics of freshwater mussels in a controlled laboratory study. Because uptake (ku ) and elimination (ke ) rate constants and time to steady state are important parameters for food web bioaccumulation models, we derived bioaccumulation kinetic parameters following exposure to perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorodecanoic acid (PFDA) at 10 µg/L and perfluoroundecanoic acid (PFUnDA) at 1 µg/L during a 14-day uptake period followed by a 7-day elimination period. Kinetic and ratio-based bioaccumulation factors (BAFs) were subsequently calculated, for example ratio-based BAFs for mussel at day 7 were determined for PFHxS (0.24 ± 0.08 L/kg), PFOS (7.73 ± 1.23 L/kg), PFDA (4.80 ± 1.21 L/kg), and PFUnDA (84.0 ± 14.4 L/kg). We generally observed that, for these four model PFAS, freshwater mussels have relatively low BAF values compared with other aquatic invertebrates and fish. Environ Toxicol Chem 2023;42:1190-1198. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Ácidos Alcanossulfônicos , Bivalves , Fluorocarbonos , Animais , Cinética , Bioacumulação , Ecossistema , Água Doce , Fluorocarbonos/análise
4.
Rapid Commun Mass Spectrom ; : e9517, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055377

RESUMO

RATIONALE: The presented analytical method demonstrates a straightforward approach for environmental applications based on laser diode thermal desorption (LDTD). The study aims to examine abilities to achieve environmentally relevant outcomes for different types of pollutants with a fast method following the green chemistry principle. METHODS: Treatment of environmentally relevant sample matrix (river water) was limited to filtration with a cellulose filter. Samples fortified with analytes were spotted in a LazWell plate and dried before analysis. Samples thermally desorbed using LDTD were detected with Q Exactive hybrid high-resolution mass spectrometer operation in full-scan data-dependent acquisition mode (LDTD-FullMS-dd-MS/MS). RESULTS: LDTD-FullMS-dd-MS/MS exhibits the lowest quantification limits for anatoxin-A, atrazine, caffeine, methamphetamine, methylbenzotriazole, paracetamol, perfluorobutanoic acid, perfluorohexanoic acid, and perfluorooctanoic acid of between 0.10 and 1.0 ng mL-1 in the environmentally relevant sample matrix. CONCLUSIONS: The developed method was successfully evaluated for different environmental pollutants and radically reduced sample treatment and time requirements for analysis and sample preparation.

5.
Sci Total Environ ; 816: 151535, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34762945

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been used in consumer and military products since the 1950s but are increasingly scrutinized worldwide because of inherent chemical properties, environmental contamination, and risks to public health and the environment. The United States Environmental Protection Agency (USEPA) identified 24 PFASs of interest for further study and possible regulation. We examined 371 peer-reviewed studies published since 2001 to understand the occurrence and distribution of 24 priority PFASs in global surface waters and groundwater. We identified 77,541 and 16,246 data points for surface waters and groundwater, respectively, with total PFAS concentrations ranging from low pg/L to low mg/L levels. Most data were from Asia, Europe, and North America with some reports from Oceania. PFAS information from other geographic regions is lacking. PFASs levels are consistently higher in rivers and streams followed by lakes and reservoirs and then coastal and marine systems. When sufficient data were available, probabilistic environmental hazard assessments (PEHAs) were performed from environmental exposure distributions (EEDs) to identify potential exceedances of available guideline values for each compound by matrix, region, and aquatic system. Specifically, exceedances of USEPA drinking water lifetime health advisory levels were up to 74% for PFOS in groundwater from Oceania and 69% for PFOA in North American groundwater. Our findings support selection of environmentally relevant experimental treatment levels for future toxicology, ecotoxicology and bioaccumulation studies, and potable source water exposure investigations, while highlighting PFASs and major geographic locations requiring additional study and inclusion in global monitoring and surveillance campaigns.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Saúde Ambiental , Monitoramento Ambiental , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/análise
6.
Bull Environ Contam Toxicol ; 105(5): 692-698, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33040230

RESUMO

Effluents from on-site wastewater treatment systems can influence surface water quality, particularly when infrastructure is aging, malfunctioning, and improperly installed. Municipal wastewater often contains chemical compounds that can lead to adverse biological effects, such as reproductive impairment, in organisms that are chronically exposed. A significant number of these compounds are endocrine-disrupting chemicals. Water quality influences of on-site systems are poorly studied in semi-arid regions where instream flows are seasonally dependent on snowmelt, and when instream dilution of wastewater effluents is minimal during other times of the year. Here we examined surface water estrogenicity in low order tributaries of two unique semi-arid streams with on-site wastewater treatment systems, for which seasonal instream flow fluctuations occur in Park City, UT, USA. Water samples were collected from a total of five locations along two lotic systems downstream from active on-site treatment systems. Samples were extracted for targeted chemical analyses and to perform in vivo and in vitro bioassays with juvenile rainbow trout. Estrogenic activity was measured by quantifying the concentration and expression of vitellogenin (VTG) in plasma and liver, respectively. Plasma VTG presented elevated levels in fish exposed to water samples collected at the two sites in close proximity to on-site systems and during seasons with low stream discharge, though the levels observed did not suggest severe endocrine disruption. However, long-term exposure to these surface water could compromise the fish populations. While the sensitivity of in vitro bioassays was low and targeted chemical analyses did not identify causative compounds, the use of complementary lines of evidence (e.g., in vivo biological models) was advantageous in identifying estrogenic activity in waters influenced by effluents from on-site wastewater systems.


Assuntos
Disruptores Endócrinos/toxicidade , Oncorhynchus mykiss/sangue , Rios/química , Neve/química , Vitelogeninas/sangue , Poluentes Químicos da Água/toxicidade , Animais , Cidades , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Modelos Teóricos , Estações do Ano , Utah , Vitelogeninas/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água , Qualidade da Água
7.
Sci Total Environ ; 736: 139600, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32474277

RESUMO

Recent studies have reported potential neurotoxicity and epigenetic alteration associated with exposure to several per- and polyfluoroalkyl substances (PFASs). However, such information is limited to a few compounds (e.g., perfluorooctane sulfonate), primarily based on rodent experiments, and the underlying toxicological mechanism(s) for many PFAS in the environment remain poorly understood. In the present study, we investigated 8:8 perfluoroalkyl phosphinic acid (8:8 PFPiA), an under-studied PFAS with high persistency in the environment and biota, using the zebrafish model. We exposed zebrafish embryos (<4 hpf) to various concentrations of 8:8 PFPiA (0, 0.0116, 0.112, 0.343, 1.34, 5.79 µM) for 144 h. Although there was no significant change in survival, hatchability and malformations, zebrafish locomotor speed at 120 h significantly decreased in dark photoperiod. At 144 h, several genes related to thyroid hormones that are essential for neurodevelopment, including corticotropin releasing hormone b (crhb), iodothyronine deiodinase 3a (dio3a), thyroid-stimulating hormone receptor (tshr) and nkx2 homeobox1 (nkx 2.1), were up-regulated by 8:8 PFPiA at 5.79 µM. 8:8 PFPiA also significantly down-regulated a neurodevelopmental gene, elav like neuron-specific RNA binding protein (elavl3), at 1.34 and 5.79 µM; in addition, one oxidative stress gene was slightly but significantly up-regulated. Further, global DNA methylation was significantly decreased at higher treatment levels, identifying effects of 8:8 PFPiA on epigenetic regulation. However, promoter DNA methylation of selected genes (dio3, tshr, nkx2.1) were not statistically altered, though dio3 methylation showed a decreasing trend with 8:8 PFPiA exposure. Our results specifically advance an understanding of molecular toxicology of PFPiA and more broadly present an approach to define diverse responses during animal alternative assessments of PFASs.


Assuntos
Fluorocarbonos , Peixe-Zebra , Animais , Metilação de DNA , Epigênese Genética , Ácidos Fosfínicos , Glândula Tireoide
8.
Sci Total Environ ; 708: 134494, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31791794

RESUMO

Effective removal of organic contaminants in wastewater effluent poses a challenge to small communities worldwide, particularly in the Arctic due to infrastructure challenges and harsh climates. To understand better the efficacy of current treatment options and risks posed by pharmaceuticals and pesticides on receiving waters in the Arctic, four representative human communities in Nunavut, Canada were evaluated. Per- and polyfluorinated alkyl substances (PFASs) were also investigated in one community. These communities have treatment ranging from primary lagoons, engineered wetlands, and natural lakes. Pharmaceuticals and pesticides were measured using the organic diffusive gradients in thin film (o-DGT) passive sampler in summer 2018. Of the 34 compounds studied, seven pharmaceuticals were found at least once: atenolol, carbamazepine, metoprolol, naproxen, sulfapyridine, sulfamethoxazole, and trimethoprim. With the exception of 5210 ng naproxen/L in Iqaluit, most receiving waters showed negligible amounts of contamination. Iqaluit had the poorest overall system performance while Baker Lake had the best. Measured pharmaceutical concentrations do not appear to pose a significant acute hazard to receiving waters at this time, based on known toxicological endpoints. PFAS concentrations were found to be over 100-fold greater in Cambridge Bay wastewater than previously reported Arctic seawater. Results suggest that wastewater may be an important point source of PFASs in Arctic communities. The o-DGT passive samplers performed well in marine Arctic settings. We recommend further testing of wastewater efficiencies in Arctic communities along with evaluations of seasonal variations.


Assuntos
Águas Residuárias , Regiões Árticas , Monitoramento Ambiental , Fluorocarbonos , Nunavut , Poluentes Químicos da Água
9.
Environ Sci Technol ; 52(21): 12573-12582, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30244575

RESUMO

The organic-diffusive gradients in thin-films (o-DGT) technique has emerged as a promising aquatic passive sampler that addresses many of the challenges associated with current sampling tools used for measurement of polar organic contaminants. This study represents the first comprehensive field evaluation of the o-DGT in natural surface waters, across a wide suite of polar pharmaceuticals and pesticides. We explore the utility and limitations of o-DGT as a quantitative measurement tool compared to grab sampling and the polar organic chemical integrative sampler (POCIS) across four connected agricultural and wastewater-influenced freshwater systems spanning 600 km from the U.S. border to northern Manitoba, Canada. Overall, the suite of analytes detected with o-DGT and POCIS was similar. Concentrations in water estimated using o-DGT were greater than concentrations estimated from POCIS in 71 of 80 paired observations, and on average, the estimates from o-DGT were 2.3-fold greater than estimates from POCIS. Grab sample concentrations suggested that the systematic underestimation with POCIS were largely a result of sampling rate variation related to flow rate and boundary-layer effects, an issue reported consistently in the POCIS literature. These comprehensive measurements in an agriculturally influenced fast-flowing river, long-term sampling (>40 days) in a large dilute lake system, deployments in wastewaters, and under ice at near-freezing temperatures represent effective stress testing of o-DGT under representative and challenging conditions. Overall, its strong performance and improved accuracy over POCIS supports its use as a robust, quantitative, and sensitive measurement tool for polar organic chemicals in aquatic systems.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Canadá , Manitoba , Águas Residuárias
10.
Anal Chim Acta ; 1018: 45-53, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29605133

RESUMO

Recent literature has demonstrated the utility of the organic-diffusive gradients in thin films (o-DGT) device as an effective passive sampler for polar organics in aquatic environments. Here, a new configuration comprising a polyacrylamide diffusive gel and Sepra™ ZT sorbent was developed and calibrated under multiple pH conditions. Linear uptake (r2 > 0.9) was observed at pH ≈ 5 for a suite of 31 pharmaceuticals and pesticides over 25 days, suitable for typical passive sampler deployments. At pH ≈ 8.5, linear uptake (r2 > 0.9) was observed for many of the same compounds. Comparisons of the uptake rates between the two pH experiments generally agreed (14% average relative error), with only 6 compounds exhibiting marked reduction with pH (e.g. sulfonamide antibiotics). These discrepancies may be explained by changes in analyte-sorbent interaction (H-bonding) due to speciation changes at varying pH. Samplers performed well in field evaluations conducted in an impacted river system, showing close agreement with the previously validated agarose/HLB o-DGT configuration deployed simultaneously. This work illustrates that polyacrylamide diffusive gels are a more robust and resistant outer-membrane material compared to agarose used in earlier o-DGT configurations. Sepra™ ZT binding gels served as an effective binding resin, offering a cost effective and commercially available sorbent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...